Welcome to the Course "Experimental Physics (Key Concepts)"

The course “Key Concepts in Experimental Physics” (3 SWS lecture + 1 SWS exercise) is part of the Phy-Ma-Exp module of the Master's program in Physics. It deals with common strategies in the experimental investigation of the structure and excitation of physical systems on different energy and size scales and relates physical concepts and methods from different experimental fields to each other. 
Some video recordings of Michael Kobel are collected in this playlist. You have to login into Videocampus Sachsen to see them.  

Nr Date
Lecturer
Topics Slides
(optional Videos)
recommended English reading
(nearly all online via SLUB access)
further reading in German
(not all online)
1

 

13.10.25
Kobel

 

0. Introduction
1. Energy scales
1.1. Scales and units in physics

slides

 

2

16.10.25
Kobel

 1.2. Primary energy scales in bound systems
  1.2.1. Momenta and energies in a potential well
  1.2.2. Fundamental inter-actions and their potentials
  1.2.3. Covalent bindings and their potentials
  1.2.4. Binding energies and radii
  1.2.5. Excitation spectra and naming conventions

slides
(with AMCS)

3

 

 

20.10.25
Eng

1.3. Secondary energy scales
1.3.0 Universality of the electromagnetic coupling α
1.3.1 Molecular Bond and Hydrogen molecule

slides

4

 

 

 

 

27.10.25
Eng

1.3.2 Angular momentum coupling

A)  Spin-orbit coupling in the hydrogen atom
B) -Clebsch-Gordan coefficients
C) Atoms in weak and strong magnetic fields
(Zeeman Effect)

 

 

 

 

slides

 

 

5

30.10.25
Kobel

1.3.3. Hyperfine Structure 
(ss coupling)



1.3.4. LS and ss-couplings in Mesons


1.3.5. ls-coupling in the nuclear shell model 

slides

video

6 3.11.25
Eng

1.3.6. Multi-electron atoms
- LS coupling, Hund's rule
- j-j coupling, heavy atoms

1.4. Collective Excitations
1.4.1. Giant Dipole Resonances in nuclei (Kobel)


1.4.2. Surface plasmons in nano particles

slides
video

7 10.11.25
Kobel

1.4.3. Phonons in Solids (Eng)

1.4.4. Polaritons (Eng)

1.4.5. Rotational and Vibrational Excitations of
Molecules and Nuclei


2.Transitions between Quantum States

2.1. Radiative Transitions

2.1.1. Emag multipol radiation in atoms and nuclei

slides
video

8 13.11.25
Kobel

2.1.2. Emag and strong Transitions in hadrons

2.1.3. Transitions in molecules

2.2. Scattering Processes
2.2.1. Elastic, quasi-elastic  and inelastic scattering

slides

video

9

17.11.25
Eng

2.2.2. Inelastic neutron scattering in solids

slides

10 24.11.25
Kobel

2.2.3. Neutron scattering on nuclei from meV to MeV

2.2.4.A) Scattering of electrons on nuclei, form factors

slides

video

 

11 27.11.25
Eng

2.2.4. B) Scattering of electrons on nuclei and hadrons (Kobel)

2.3. Electrons in Solids
2.3.1. Optical Absorption
A) Free electrons
B) Lattice absorption

slides

 
12 1.12.25
Eng

2.3.1. Optical Absorption
C) Interband excitation

2.3.2. Electrons in a periodic potential, Bloch Waves

2.3.3. A) Electronic band structure

slides

   

          Manini, Physics of Matter

13 8.12.25
Eng

2.3.3. B) Photoelectron Spectroscopy, ARPES

3. Spectroscopy by quantum state mixing

3.1. A)  Examples of mixed  Two-State Systems 

3.1. B) Time Evolution in
- Connected potential well
- Ammonia Molecule

slides

 
14 11.12.25
Kobel

3.2.Meson- Antimeson Oscillations
3.2.1. Time evolution of coupled mesons 
3.2.2. Experimental evidence
3.2.3. Overview of meson-antimeson Oscillations
3.2.4. CP Violation in Kaon-mixing
3.2.5. Analogy to coupled pendulums

 

3.3. Neutrino Flavor Oscillations
3.3.1. Three Flavor Oscillations
3.3.2. Atmospheric Neutrinos
3.3.3. Reactor-Neutrinos
3.3.4. Solar Neutrinos
          -> 05.01.2026

slides

 
15 15.12.25
Eng

 

3.4. Dynamic effects in level crossings

3.4.1. Landau-Zener theory of avoided crossings
3.4.2. Ammonium-molecule in an electric field
3.4.3. Level crossings of molecular magnets in a magnetic field  

slides

 
16 5.1.26
Kobel

3.3.4. Solar Neutrinos
          (<- from 11.12.2025)

3.4.4. MSW effect for solar neutrinos

slides

video

 
17

 

8.1.26
Kobel

4. Symmetry Breaking

4.1. General Concept

4.1.1. Spontaneous Symmetry Breaking
4.1.2. Overview of Phenomena
(Breaking Parameter, Order Parameter)
4.1.3. Nuclear Deformations
4.1.4. Phase Transitions and Energy Densities

slides

video

18

12.1.26
Eng

4.2. Ferromagnetism 
4.2.1 Landau-Theory of the Ferromagnet

4.2.2 Microscopic Models: Weiss-Model, Heisenberg-Model, Ising-Model

4.2.3 Critical Phenomena

4.2.4 Ferromagnetic Excitations

slides

 

19

19.1.26
Eng

4.3. Superconductivity
4.3.1. History of Superconductivity
4.3.2. Ginsburg-Landau Theory
4.3.3. BCS Theory
4.3.4. Experimental Evidences

slides

20

22.1.26
Kobel

4.4. Electroweak Symmetry Breaking and BEHiggs-Mechanism

4.4.1. The Breaking of SU(2)L

4.4.2. Comparison with Landau and Landau-Ginzburg

4.4.3. Mass Generation and Electroweak Mixing

4.4.4. Gauge Boson Mass as Field Screening

4.4.5. Excitation of massive “Higgs-like” modes in BEH and SC

4.4.6. Comparing Scales
of BEH and BCS Superconductors



slides

video, part 1

video, part 2

21

26.1.26
-->
2.2.26 
Eng

4.6. Topological Effects

4.6.1. Topological Signatures, Winding Number

4.6.2. Non-collinear structures: Skyrmions
4.6.3. Topological Systems - Optics, Elektronics, Manetism 

 

   

22

2.2.26
Kobel
Eng

4.5. Phase Transitions in Particle Physics

4.5.1. Chiral Symmetry Breaking and Hadron-Masses from Nambu, Jona-Lasinio Model

4.5.2. Chiral Phase Transition for Quarks and Quark-Gluon Plasma

4.5.3. Electroweak Phase Transition and fate of the Universe

4.6. Topological Effects

4.6.1. Topological Signatures, Winding Number

4.6.2. Non-collinear structures: Skyrmions
4.6.3. Topological Systems - Optics, Elektronics, Manetism 

slides

 

23

5.2.26
Kobel
Eng

5. Evaluation and Exam Preparation

5.1. Results of Lecture Evaluation

5.2. Consultation and hints for upcoming Oral Exams

5.3. FAQ Session for student questions to be collected beforehand in the OPAL Forum (please subscribe the forum!)

slides