Welcome to the Course "Experimental Physics (Key Concepts)"

The course “Key Concepts in Experimental Physics” (3 SWS lecture + 1 SWS exercise) is part of the Phy-Ma-Exp module of the Master's program in Physics. It deals with common strategies in the experimental investigation of the structure and excitation of physical systems on different energy and size scales and relates physical concepts and methods from different experimental fields to each other.
All videos of Michael Kobel's lectures will also be collected in a playlist on Videocampus Sachsen.

Nr Date
Lecturer
Topics Slides
Video
recommended English reading
(all online via SLUB access)
further reading in German
(not all online)
1

 

13.10.25
Kobel

 

0. Introduction
1. Energy scales
1.1. Scales and units in physics

slides

 

2

16.10.25
Kobel

 1.2. Primary energy scales in bound systems
  1.2.1. Momenta and energies in a potential well
  1.2.2. Fundamental inter-actions and their potentials
  1.2.3. Covalent bindings and their potentials
  1.2.4. Binding energies and radii
  1.2.5. Excitation spectra and naming conventions

slides
(with AMCS)

3

 

 

20.10.25
Eng

 

1.4. Secondary energy scales
1.4.0 Universality of the electromagnetic coupling α
1.4.1 Hydrogen molecule

slides

4

 

 

 

 

27.10.25
Eng

 

 

1.4.2 Angular momentum coupling
- Clebsch-Gordan coefficients
- Spin-orbit coupling in the hydrogen atom

1.4.3 Atoms in weak and strong magnetic fields

 

 

 

 

slides

 

 

 

5

30.10.25
Kobel

1.4.5. Hyperfine Structure
(ss coupling)



1.4.6. LS and ss-couplings in Mesons


1.4.7. ls-coupling in the nuclear shell model 

slides

6 3.11.25
Eng

1.4.4 Multi-electron atoms
- LS coupling, Hund's rule
- j-j coupling, heavy atoms

1.5. Collective Excitations
1.5.1. Giant Dipole Resonances in nuclei (Kobel)


1.5.2. Surface plasmons in nano particles

 

slides

7 10.11.25
Kobel

1.5.3. Phonons in Solids (Eng)

1.5.4. Polaritons (Eng)

1.5.5. Rotational and Vibrational Excitations of
Molecules and Nuclei


2.Transitions between Quantum States

2.1. Radiative Transitions

2.1.1. Emag multipol radiation in atoms and nuclei



 

slides
8 13.11.25
Kobel

2.1.2. Emag and strong Transitions in hadrons

2.1.3. Transitions in molecules

2.2. Scattering Processes
2.2.1. Elastic, quasi-elastic  and inelastic scattering

slides

9

17.11.25
Eng

2.2.2. Inelastic neutron scattering in solids

slides

10 24.11.25
Kobel

2.2.3. Neutron scattering on nuclei from meV to MeV

2.2.4.A) Scattering of electrons on nuclei, form factors

slides

 

11 27.11.25
Eng

2.2.4. B) Scattering of electrons on nuclei and hadrons (Kobel)

2.3. Elektrons in Solids
2.3.1. Optical Absorption
A) Free electrons
B) Lattice absorption

slides

 
12 1.12.25
Eng

2.3.1. Optical Absorption
C) Interband excitation

2.3.2. Electrons in a periodic potential, Bloch Waves

2.3.3. A) Electronic band structure

slides

   

          Manini, Physics of Matter

13 8.12.25
Eng

2.3.3. B) Photoelectron Spectroscopy, ARPES

3. Spectroscopy by quantum state mixing

3.1. A)  Examples of mixed  Two-State Systems 

3.1. B) Time Evolution in
- Connected potential well
- Ammonia Molecule

slides

 
14 11.12.25
Kobel

3.2.Meson- Antimeson Oscillations
3.2.1. Time evolution of coupled mesons 
3.2.2. Experimental evidence
3.2.3. Overview of meson-antimeson Oscillations
3.2.4. CP Violation in Kaon-mixing
3.2.5. Analogy to coupled pendulums

 

3.3. Neutrino Flavor Oscillations
3.3.1. Three Flavor Oscillations
3.3.2. Atmospheric Neutrinos
3.3.3. Reactor-Neutrinos
3.3.4. Solar Neutrinos
          -> 05.01.2026

slides

 
15 15.12.25
Eng

 

3.4. Dynamic effects in level crossings

3.4.1. Landau-Zener theory of avoided crossings
3.4.2. Ammonium-molecule in an electric field
3.4.3. Level crossings of molecular magnets in a magnetic field  

slides

 
16 5.1.26
Kobel

3.4.4. MSW effect for solar neutrinos

 

 
17

 

8.1.26
Kobel

4. Symmetry Breaking

4.1. General Concept

4.1.1. Spontaneous Symmetry Breaking
4.1.2. Overview
(Breaking Parameter, Order Parameter)
4.1.3. Phase Transitions and Energy Densities

 

18

12.1.26
Eng

4.2. Ferromagnetismus  
4.2.1 Landau-Theorie des Ferromagnetismus

4.2.2 Mikroskopische Modelle: Weiss-Modell, Heisenberg-Modell, Ising-Modell

4.2.3 Kritisches Verhalten

4.2.4 Steifheit und Anregungen des Ferromagneten

 

 

19

19.1.26
Eng

4.3. Supraleitung
4.3.1. Historie der Supraleitung
4.3.2. Ginsburg-Landau Theorie
4.3.3. BCS Theorie
4.3.4. Experimentelle Evidenzen

 

 

20

22.1.26
Kobel

4.4. Elektroschwache Symmetriebrechung und Higgs-Mechanismus

4.4.1. Idee des BEHiggs-Felds

4.4.2. Vergleich mit Landau und Landau-Ginsburg

4.4.3. Massenerzeugung

4.4.4. Masse als Abschirmung

4.4.5. Analogie zum Supraleiter

 

 

21

26.1.26
Eng

4.5. Topologische Effekte

4.5.1. Topologische Signaturen, Windungszahl

4.5.2. Non-collinear structures: Skyrmions
4.5.3. Topologische Systeme - Optik, Elektronik, Manetismus 

 

   

22

2.2.26
Kobel

4.5. EW Phase Transition

4.5.1. Eigenschaften des Higgs

4.5.2. Experimentelle Vermessung des Higgs-Bosons

 

4.5.3. Elektro-schwacher Phasenübergang

4.5.4. Higgs and Cosmology