Behind the Secrets of Large Language Models (WiSe 24/25)

The lecture is taught by Prof. Dr. Michael Färber and Prof. Dr. Simon Razniewski.

  • Lecture -- Mondays, 11:10 - 12:40 at FOE/0244/H
  • Exercise -- Mondays, 16:40 - 18:10 at FOE/0244/H 

 

Schedule

Date Lecture Exercise
Oct 14, 2024
L1 - Introduction to LLMs (Razniewski)
Crash Course on NNs
Oct 21, 2024
L2 - Neural Networks (Färber)
E1 - Neural Nets Refresher
Oct 28, 2024
L3 - Deep Learning and Attention (Färber)
E2 - Implementing Attention
Nov 4, 2024
L4 - Word Representation (Razniewski)
E3 - Word Representations
Nov 11, 2024 No Lecture No Exercise
Nov 18, 2024
L5 - Training Data (Razniewski) 
E4 - Training Language Models
Nov 25, 2024
L6 - LM Architectures (Färber)
E5 - Collecting Data
Dec 2, 2024
L7 - Training Language Models (Razniewski)
E6 - LM Architectures
Dec 9, 2024
L8 - Transfer Learning (Färber)
E7 - Finetuning Language Models
Dec 16, 2024
L9 - Evaluation (Razniewski)
Project Kickoff
Dec 23, 2024
Christmas and New Year Break
Christmas and New Year Break
Dec 30, 2024
Christmas and New Year Break
Christmas and New Year Break
Jan 6, 2025
L10 - Applications (Färber)
E8 - Quantization Evaluation 
Jan 13, 2025
L11 - KGs / RAG (Robert Haase, Uni. Leipzig)
E9 - RAG / Tools
Jan 20, 2025
L12 - Vision Models (Robert Haase, Uni. Leipzig)
E10 - Diffusion Models
Jan 27, 2025
L13 - Ethics and Safety
Project Preparation
16.12.-10.2.
Project period
 
10.2.2025
Reports due
 
17.2.-23.2.
Peer grading
 
26.+28.2.
Project presentations