TUBAFdigital - Mathematics of Machine Learning

TU Bergakademie Freiberg | semesterübergreifend TUBAFdigital - Mathematics of Machine Learning

TUBAFdigital - Mathematics of Machine Learning

General Information:

This course is obligatory for the Master studies "Mathematics of Data and Resource Sciences" as well as optional for the Diploma studies  "Angewandte Mathematik" and the Master studies "Geophysik". It takes place each year in winter term. It might be taught in German, if only German speaking students attend the lectures, but the material will be provided in Englisch.

Official course description


Information for SUUUpoRT students:

In the winter term 2023/24 this course will be provided within the SUUUpoRT/TUBAFdigital program. In case SUUUpoRT students want to attend the lectures online, we provide a hybrid mode for the lectures. Please inform the lectuter if the hybrid mode is required. Also there is the possibility to obtain a certificate of participation given the succesful completion of certain quizes. Please enroll in the corresponding learning group "SUUUpoRT-Students"!


Contents:
  • statistical learning theory for classification and regression (PAC
    model, empirical risk minimization, Vapnik-Chervonenkis theory)
  • linear approaches for classification (perceptron, logistic
    regression, support vector machines, kernel trick)
  • feedforward neural networks
  • training via stochastic optimization, regularization, validation and testing

Teaching and Dates (WiSe 2024/25)
  • 3 SWS Lecture (Prof. Dr. B. Sprungk)
    Tuesdays, 09:45 - 11:15, room MIB-1113
    Thursdays (even weeks), 14:30 - 16:00, room MIB-1113
  • 1 SWS Exercise (M. Sc. Hanyue Gu)
    Tuesdays (even weeks), 18:00 - 19:30, room MIB-1113

 

Pre-requisites:

Recommended are basic knowledge of  mathematical optimization, numerical analysis and probability theory


Exam modalities:
  • The exam is an oral exam of 30 minutes
  • The module has 6 credit points.

 Module number: MAML MA Nr. 3694

Weitere Informationen anzeigen
Informationen zum Zugang
  • Dieser Inhalt ist für Sie unter den folgenden Bedingungen (eine muss erfüllt sein) freigegeben:
    • Institution enthält den Wert TU Bergakademie Freiberg
    • Institution enthält den Wert HTW Dresden
    • Institution enthält den Wert TU Chemnitz
    • E-Mail-Adresse enthält den Wert "[Anzeige aus Datenschutzgründen unterdrückt]"